Two-Dimensional Packing Problems in Telecommunications

Silvano Martello
DEIS, University of Bologna, Italy silvano.martello@unibo.it

from joint works with A. Lodi (University of Bologna) \& M. Monaci (University of Padova) together with
C. Eklund \& Jani Moilanen (Nokia Siemens Networks)
C. Cicconetti, L. Lenzini \& E. Mingozzi (Univ. Pisa)! and
C. Hurkens \& G. Woeginger (TU Eindhoven)I

April 2012, Izmir
@(O囚®
This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Outline of this talk

- Objective: description of the development of an interdisciplinary research applicable to real world problems.
- Four teams involved: in chronological order,

Nokia Siemens laboratory: research group on the IEEE 802.16/WiMAX standard;
University of Pisa: research group on Computer Networking (Prof. Luciano Lenzini);
University of Bologna: research group on Combinatorial Optimization (S.M.);
Technical University of Eindhoven: research group on Theoretical Combinatorial Optimization (Prof. Gerhard J. Woeginger).

- The whole project has been described in:

Lodi, Martello, etc ... Efficient two-dimensional packing algorithms for mobile WiMAX.
Management Science, 2011.I

Contents

The project has been developed following the classical steps of an applied research:

1. birth: a real-world problem;
2. development of mathematical models (new two-dimensional packing problems);
3. theoretical analysis (computational complexity: $\mathcal{N} \mathcal{P}$-hard problems);
4. definition of mathematical models for the real-world problems; \|
5. evaluation of the technological constraints (extremely tough CPU limitations);
6. development of solution algorithms (fast and efficient heuristics);
7. implementation and experimental evaluation on realistic scenarios.

1. The birth: an optimization problem in telecommunications

Telecommunication systems adopting the IEEE 802.16/WiMAX standard:I

- a fixed station transmits/receives data packets to/from other stations (e.g., the mobile phones);
- all transmissions are performed using rectangular frames [time \times frequency] (downlink zones).I

- The fixed station must maximize the frame utilization by

1. deciding which packets will be included in the next transmission phase;
2. arranging each selected packet into one or more rectangular regions;
3. allocate the regions to the frame (without overlapping).I.
4. The models: a look at the combinatorial optimization literature

Classical Two-Dimensional Bin Packing Problem (2BP)

- given n rectangles (items), having width w_{j} and height $h_{j}(j=1, \ldots, n)$,

- and an unlimited number of large rectangles (bins), having width W and height H, \|
- A. pack all the items, without overlapping, in the minimum number of bins:I

or

- B. pack a subset of items, without overl., in a single bin maximizing the packed area.II
- Many variants: The items may/ may not be rotated; \| by $90^{\circ} /$ any angle;
guillotine cutting may/may not be imposed (items must be obtained through a sequence of edge-to-edge cuts parallel to the edges of the bin);
- . . . large literature ||
- Generalization of the One-Dimensional BP: \boldsymbol{n} items of size w_{j}, bins of size W.II

2. The models: our problems vs standard 2BPs

Main difference

- Input to 2BP: set of rectangles to be packed.II
- Input to the telecommunication problems: set of data packets to be packed:
- a data packet is an amount of information, in practice a number;
- this number may be interpreted as an area a_{j};
- this area must be allocated to a $w_{j} \times h_{j}$ rectangle such that $w_{j} h_{j} \geq a_{j}$,
- or to a number m_{j} of rectangles such that $w_{j_{1}} h_{j_{1}}+\ldots+w_{j_{m_{j}}} h_{j_{m_{j}}} \geq a_{j}$; I
- the selected rectangles must then be optimally packed in the downlink zone (the bin):

-
- each packed rectangle needs information in the downlink zone (sizes, coordinates), i.e., \|
- part of the bin is used for maps transmission: size proportional to number of rectangles;
- hence the need of limiting the number of rectangles.l

3. Theoretical analysis: Problem P0

Questions:

- How difficult are the telecommunication problems at hand?
- Can they be solved in polynomial time? If not
- Can they be solved in pseudo-polynomial time? If not
- Can they be approximated with worst-case performance guarantee in polynomial time?
- Can they be solved efficiently in practice?

To answer these questions, let us consider the simplest combinatorial optimization problem we can "extract" from the given problems:l|

Problem P0 (Area Packing):

- n areas;
- a single bin;
- allocate each area to one rectangle, and pack all the rectangles into the bin without overlapping.

3. Theoretical analysis: recognition version of P0

- Formally:
- n integer areas $a_{j}, j \in J=\{1, \ldots, n\}$ and
- a single bin of integer sizes $W \times H$, with $W \cdot H \geq \sum_{j \in J} a_{j}$
- Is it possible to find integers w_{1}, \ldots, w_{n} and h_{1}, \ldots, h_{n} such that:
$-a_{j}=w_{j} h_{j}, j \in J$, and
- the n rectangles $R_{j}=\left[w_{j}, h_{j}\right], j \in J$, can be packed into the bin without overlapping?
- 8×7

- $14=2 \times 7$
- $\quad=2 \times 3$
- $8=4 \times 2$
- $6=6 \times 1$
- $16=4 \times 4$

3. Theoretical analysis: Complexity of P0

-
- A simple (although non-trivial) transformation from a variant of PARTITION shows that P0 is ordinary NP-complete.
- Sophisticated techniques using
- tools from number theory,
- transformation from a variant of THREE-PARTITION prove that PO is strongly NP-complete.

Hurkens, Lodi, Martello, Monaci and Woeginger
Complexity and approximation of an area packing problem
Optimization Letters, 2012.

- Hence P0 cannot be solved in polynomial time, nor in pseudo-polynomial time unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.
- However its optimization version can be approximated with worst-case performance guarantee in polynomial time.

3. Theoretical analysis: Optimization version of P0

- The recognition version of problem P0 can be transformed into the following optimization version:
- assume that any area a_{j} can be arbitrarily split into integer rectangular sub-areas (at most $a_{j} 1 \times 1$ (unit) squares);
- in this way the problem always has a feasible solution;
- objective: pack all areas into the bin without overlapping by minimizing the number of created rectangular sub-areas.
-
- Of course, if the optimal solution to the optimization version has value n, i.e., a unique rectangular sub-area is created for each original area, then the recognition version has answer "YES".
- This version makes sense by itself as a very naïve approximation of the application at hand. In other words, the best configuration is obtained by minimizing the number of sub-areas.

3. Theoretical analysis: a 3-approx algorithm for P0

- The general philosophy of the algorithm consists of the following phases:ll
A. Split each area $a_{j}, j \in J$, into two parts:
A. 1 a "large" rectangle of size $\widetilde{w}_{j} \times H$ (H the height of the bin), with

$$
\widetilde{w}_{j}=\left\lfloor\frac{a_{j}}{H}\right\rfloor, \text { and } \llbracket
$$

A. 2 a one dimensional (vertical) strip, i.e., a rectangle of size $1 \times \widetilde{h}_{j}$ with

$$
\widetilde{h}_{j}=a_{j}-\widetilde{w}_{j} H
$$

(possibly only one part is created)
B. Subdivide the bin into two parts having height H :I
B. 1 a "large" portion of size $W_{\ell}\left(=\sum_{j \in J} \widetilde{w}_{j}\right) \times H$ that allocates the rectangles;
B. 2 a "small" portion of size $W_{s}\left(=W-W_{\ell}\right) \times H$, whose W_{s} columns, of size $1 \times H$, are treated as $W_{s} 1$-dimensional bins: consecutively allocate the one dimensional strips to the 1 -dimensional bins by further splitting only when necessary.
C. Post-optimize the solution. (Not needed for the worst-case guarantee.)】
3. Theoretical analysis: a 3-approx algorithm for P 0 , example Instance with $W=15, H=10$

area	a_{j}	\widetilde{w}_{j}	\widetilde{h}_{j}
1	32	3	2
2	6	-	6
3	50	5	-
4	25	2	5
5	20	2	-
6	14	1	4

3. Theoretical analysis: a 3-approx algorithm for P0, proof

- Consecutively pack the strips in the first column until a strip is found that does not fit; split such strip, packing the largest feasible part in the current column; initialize the next column with the remaining part, and continue until all strips are packed.
- Hence each strip is split at most once (recall that each strip has size $\widetilde{h}_{j}<H$).II
- Hence each area produces at most three sub-areas, which proves the worst case behavior.

- It can be shown that the bound is tight.II

3. Conclusions of the theoretical analysis

Given an instance of Area Packing Problem (P0),

- it is strongly NP-complete to decide whether there is a feasible solution that has a single rectangle per area;
- it is trivial to construct instances for which such a solution does not exist;
- it is always possible to construct a solution that has at most three rectangles per area;
- such a solution can be found in linear time;
- what about the intermediate case (two rectangles per area)? !
- it can be proved that all instances with $n \leq 3$ areas have a feasible solution with two rectangles per area;
- Conjecture: Every instance possesses a feasible solution with at most two rectangles per area.II

Post-optimization of the approximation algorithm

- Post-optimization is useful in practice when there are areas j such that:
(i) both the associated large rectangle and one dimensional strip have been created, and
(ii) strip j is packed alone in a 1-dimensional bin (column):

- Move the 1-dimensional bin that packs strip j close to the rectangle associated with area j.
- \Rightarrow New solution in which area j is packed with a unique rectangle $\left(\widetilde{w}_{j}+1\right) \times H$.

4. The real-world problems

Three main differences in the telecommunication problems at hand:
(I) The areas cannot be arbitrarily split:

- For each area $a_{j}(j \in J), m_{j}$ sub-areas, each having a specified integer value

$$
a_{j l}\left(j \in J, l \in L_{j}=\left\{1, \ldots, m_{j}\right\}\right)
$$

are given in input, such that

$$
\sum_{l \in L_{j}} a_{j l}=a_{j} \forall j \in J
$$

- The sub-areas cannot be split.
- For each area we must define one or more rectangles containing sub-areas.
- This can make it impossible to completely pack all areas
(II) Each sub-area has a profit (priority):
- The objective function is to maximize the total packed profit.

4. The real world problems

(III) The mapping of the packing must be stored in the frame.

- Each packed rectangle requires additional information (size and position of the rectangle, pointer to the associated area, . . .);

- minimizing the number of rectangles leads to minimizing the size of the map. However.
- the actual size of the map can only be computed once the packing is known.l.

4. Real world problems: P1 and P2 (Distributed Permutation Zone)

\longleftarrow Bin structure for Problem P1

Bin structure for Problem P2 $\longrightarrow H_{2}$ $\mathbf{P} \mathbf{2}$ is a generalization of $\mathbf{P} 1$

- A third real-world problem (P3) will be discussed later.

5. Evaluation of the technological constraints

- The planned system must use sets of standard PCs;
- each PC must perform $\mathbf{5 0 0}$ transmissions per second, i.e.,
- every 2 milliseconds it is necessary to
- read the input;
- execute the algorithm;
- produce the output (packing and map);
- transmit the corresponding packets.
- The bad news is that each transmission takes 1 millisecond, i.e.,
- each instance must be completely solved (packing and map) within 1 millisecond!.\| (Although real instances are "small", this requirement was really tough!)|
C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, M. Monaci.

Efficient two-dimensional data allocation in IEEE 802.16 OFDMA
Proceedings of IEEE INFOCOM 2010.
A Fast and Efficient Algorithm to Exploit Multi-user Diversity in IEEE 802.16 BandAMC.
Computer Networks, 2011.

6. Development of heuristic algorithms: Stripes

- Two fast heuristics embedded in an interactive algorithm.
- Description for the more general problem P2.II
- First heuristic: Stripes, derived from the 3-approx algorithm for P0:

- the packing depends on the profit per unit area;
- the partial left column is used for the strips.II

6. Development of heuristic algorithms: Tiles

- Second heuristic: Tiles, totally different philosophy, totally different solutions:

- At each iteration, the best vertical or horizontal packing of an item is computed;
- best \simeq minimum waste;
- the partial left column is used for the residual sub-areas.

6．Development of heuristic algorithms：Tiles\＆Stripes

－Overall heuristic：Tiles\＆Stripes：
sort the sub－items according to non－increasing value of their profit per unit area；
initialize the incumbent solution σ to empty；
initialize S to contain all sub－items；
repeat
define initial tentative values for W and H（comment：usable bin）；
repeat（comment：try to pack the sub－item set S ）】
execute Tiles (S) for the current W and H ；
execute $\operatorname{Stripes}(S)$ for the current W and H ；
compute the corresponding maps，and let τ be the best feasible solution，if any；
if a feasible τ has been found then
possibly update σ with τ ，and increase the current W and $H \|$
else decrease the current W and H
until τ includes all sub－items of S or limit on number of iterations has been reached；
if all sub－items of the instance have been allocated then terminate；
if all sub－items of S have been allocated then add sub－items to S ；
else remove sub－items from S 【
until a prefixed maximum number of iterations has been executed．

Back to the real world problems: P3 (Adjacent Permutation Zone)

- Each data packet j has an area a_{j} (bytes) and a profit p_{j} (priority).
- The available zone is a $W \times H$ (time \times frequency) rectangle consisting of an array of slots:I

- Contiguous rows grouped q by q into $H^{\prime}=H / q$ logical bands;
- Matrix E of n columns (one per data packet) and H^{\prime} rows (one per logical band): $e_{i j}=\#$ bytes of data packet j that could be accommodated into a single slot of logical band i;
- data packets allocated to contiguous slots in row-wise manner, possibly over multiple rows;
- if data packet j is allocated to one logical band, say i, then the number of slots needed is $\frac{a_{j}}{e_{i j}}$; if the allocation spans over a set of contiguous logical bands, then it is $\frac{a_{j}}{\min \left\{e_{i j}\right\}}$.I.

Theoretical analysis and heuristics for Problem P3

- Packing a maximum profit subset of packets is a strongly $\mathcal{N} \mathcal{P}$-hard problem.
- Proof: transformation from the one-dimensional bin packing problem
- Preliminary empirical analysis:

The optimal solutions "very rarely" split packets between consecutive bands;

- reasonable because when splitting occurs the less favorable $e_{i j}$ is used $\left(\frac{a_{j}}{\min \left\{e_{i j}\right\}}\right.$);
- splitting only occurs for "large" high-priority packets that do not fit alone into a unique logical band.
- Two-phase algorithm:

1. pack the "large" high-priority packets in a greedy way;
2. Pack the remaining packets without splitting:

- Packing without splitting can be reformulated as a Generalized Assignment Problem.
- Solved by adapting heuristics for the GAP.I

7. Implementation and experimental evaluation on realistic scenarios.

- All algorithms have been coded in C and run on a 2.40 GHz , CORE 2 DUO E6600 Desktop, running under Linux.
- The computer networking group (University of Pisa) and the Nokia Siemens laboratory implemented a realistic simulator for both kinds of model:
- mix of data and voice users;
- higher priority to packets directed to users with an ongoing voice conversation;
- different packet sizes for data and voice traffic;
- different ratios between the number of users with data traffic and those with voice conversations.

7. Computational experiments, Probl. P2 (Distributed Permutation Zone)

- More than 90,000 instances representing different scenarios of transmission.
- Computing times in CPU milliseconds.

Optimality											Time (ms)							
	W	H	n	\# inst.	\# pot.	\# opt.	\# good	Avg. $z=U$	Avg. T									
Max T																		
B1	17	10	$[1,13]$	23,040	23,040	22,114	22,846	0.9971	0.038									
B2	17	30	$[1,15]$	23,040	23,040	21,840	23,014	0.9977	0.078									
C1	17	10	$[1,15]$	23,210	10,158	8,340	13,719	0.9241	0.085									
C2	17	30	$[1,26]$	23,317	2,512	1,788	4,544	0.8378										

- \# pot. = instances for which
$($ Total area $)+($ map space for a solution with one rectangle per packet $) \leq W H$;
- $U=$ simple (and very optimistic) upper bound on the maximum area that can be packed;
- \# opt. = instances for which $z=U$;
- \# good $=$ instances for which the ratio $z /$ maximum packable area ≥ 0.9 】

7. Computational experiments, Probl. P3 (Adjacent Permutation Zone)

- 54,000 instances representing different scenarios of transmission.
- Computing times in CPU milliseconds.

Optimality										Time (ms)			
	W	H	n	\# inst.	\# pot.	\# opt.	\# good	Avg. $z=U$	Avg. T	Max T			
B-1	8	48	$[12,45]$	9,000	9,000	8,204	9,000	0.9994	0.067	0.430			
B-4	8	48	$[12,47]$	9,000	9,000	8,271	8,999	0.9995	0.062	0.460			
B-both	8	48	$[12,47]$	9,000	9,000	8,210	9,000	0.9994	0.064	0.550			
U-1	8	48	$[10,47]$	9,000	8,091	5,321	8,164	0.9790	0.051	0.220			
U-4	8	48	$[10,60]$	9,000	8,003	5,070	8,176	0.9793	0.054	0.220			
U-both	8	48	$[20,77]$	9,000	7,057	2,218	8,197	0.9749	0.158	0.420			

- $U=$ solution to a 0-1 knapsack problem relaxation of P3:

$$
\text { profits }=\text { priorities, weights }=\frac{a_{j}}{\min \left\{e_{i j}\right\}}, \text { capacity }=W H
$$

- \# pot. = instances for which all packets are in the knapsack solution;
- \# opt. = instances for which $z=U$;
- \# good $=$ instances for which the ratio $z /$ maximum packable area ≥ 0.9

Conclusions

- we have considered real-world packing problems arising in wireless telecommunications, and especially in orthogonal frequency division multiple access (OFDMA);
- these real-world packing problems are challenging per se BUT they become even more difficult because of technological constraints which require to solve them within one millisecond.II
- we have defined a clean and easy-to-state packing problem (PO) that is the core of some of these problems;
- we have proved the complexity status of P 0 , and we have defined an approximation algorithm with worst-case guarantee;
- we have derived fast and efficient heuristics for the real-world problems;

Thank you for your attention

