Two-Dimensional Packing Problems in Telecommunications

Silvano Martello
DEIS, University of Bologna, Italy
silvano.martello@unibo.it

from joint works with A. Lodi (University of Bologna) & M. Monaci (University of Padova)
together with
C. Eklund & Jani Moilanen (Nokia Siemens Networks)
C. Cicconetti, L. Lenzini & E. Mingozzi (Univ. Pisa)
and
C. Hurkens & G. Woeginger (TU Eindhoven)

April 2012, Izmir

This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Outline of this talk

• **Objective:** description of the development of an interdisciplinary research applicable to real world problems.

• **Four teams involved:** in chronological order,

 - **Nokia Siemens** laboratory: research group on the *IEEE 802.16/WiMAX standard*;
 - **University of Pisa:** research group on *Computer Networking* (Prof. Luciano Lenzini);
 - **University of Bologna:** research group on *Combinatorial Optimization* (S.M.);
 - **Technical University of Eindhoven:** research group on *Theoretical Combinatorial Optimization* (Prof. Gerhard J. Woeginger).

• The whole project has been described in:

 Lodi, Martello, etc ... Efficient two-dimensional packing algorithms for mobile WiMAX. *Management Science, 2011.*
The project has been developed following the classical steps of an applied research:

1. **birth:** a real-world problem;

2. development of mathematical **models** (new two-dimensional packing problems);

3. theoretical analysis (**computational complexity**: \(NP\)-hard problems);

4. definition of mathematical models for the **real-world problems**;

5. evaluation of the **technological constraints** (extremely tough CPU limitations);

6. development of solution **algorithms** (fast and efficient heuristics);

7. implementation and **experimental evaluation** on realistic scenarios.
1. The birth: an optimization problem in telecommunications

Telecommunication systems adopting the **IEEE 802.16/WiMAX** standard:

- a fixed station transmits/receives *data packets* to/from other stations (e.g., the mobile phones);
- all transmissions are performed using *rectangular frames* [time \times frequency] (*downlink zones*).

The fixed station must maximize the frame utilization by

1. deciding *which packets will be included* in the next transmission phase;
2. arranging each selected packet into *one or more rectangular regions*;
3. allocate the *regions to the frame* (without overlapping).
2. The models: a look at the combinatorial optimization literature

Classical **Two-Dimensional Bin Packing Problem (2BP)**
- given \(n \) rectangles (**items**), having width \(w_j \) and height \(h_j \) \((j = 1, \ldots, n)\),

\[
\begin{array}{c}
\begin{array}{cccccc}
& & & & & \\
& & & & & \\
\end{array}
\end{array}
\]

- and an unlimited number of large rectangles (**bins**), having width \(W \) and height \(H \),
- **A. pack all the items**, without overlapping, in the **minimum number of bins**:

\[
\begin{array}{cc}
\begin{array}{cc}
\begin{array}{cc}
\begin{array}{cc}
\end{array}
\end{array}
\end{array}
\end{array}
\]

- **B. pack a subset of items**, without overl., in a **single bin maximizing the packed area**.
- **Many variants**: The items **may/may not** be rotated; **by 90°/any angle**;

 guillotine cutting **may/may not** be imposed (items must be obtained through a sequence of edge-to-edge cuts parallel to the edges of the bin);
- **. . . large literature**
- Generalization of the **One-Dimensional BP**: \(n \) items of size \(w_j \), bins of size \(W \).
2. The models: our problems vs standard 2BPs

Main difference:

- **Input to 2BP**: set of rectangles to be packed.
- **Input to the telecommunication problems**: set of data packets to be packed:
 - a **data packet** is an amount of information, in practice a **number**;
 - this number may be interpreted as an **area** a_j;
 - this area must be allocated to a $w_j \times h_j$ rectangle such that $w_j h_j \geq a_j$,
 - or to a number m_j of rectangles such that $w_{j1} h_{j1} + \ldots + w_{jm_j} h_{jm_j} \geq a_j$;
 - the selected rectangles must then be optimally packed in the **downlink zone** (the **bin**):
 - each packed rectangle needs information in the downlink zone (sizes, coordinates), i.e.,
 - part of the bin is used for **maps transmission**: size proportional to number of rectangles;
 - hence the need of **limiting the number of rectangles**.
3. Theoretical analysis: Problem P0

Questions:

• How difficult are the telecommunication problems at hand?
• Can they be solved in polynomial time? If not
• Can they be solved in pseudo-polynomial time? If not
• Can they be approximated with worst-case performance guarantee in polynomial time?
• Can they be solved efficiently in practice?

To answer these questions, let us consider the simplest combinatorial optimization problem we can “extract” from the given problems:

Problem P0 (Area Packing):

• n areas;
• a single bin;
• allocate each area to one rectangle, and
 pack all the rectangles into the bin without overlapping.
3. Theoretical analysis: recognition version of P0

- Formally:
 - n integer areas \(a_j, j \in J = \{1, \ldots, n\} \) and
 - a single bin of integer sizes \(W \times H \), with \(W \cdot H \geq \sum_{j \in J} a_j \)

- Is it possible to find integers \(w_1, \ldots, w_n \) and \(h_1, \ldots, h_n \) such that:
 - \(a_j = w_j h_j, j \in J \), and
 - the n rectangles \(R_j = [w_j, h_j], j \in J \), can be packed into the bin without overlapping?

S. Martello, Two-Dimensional Packing Problems in Telecommunications
3. Theoretical analysis: Complexity of P0

- A simple (although non-trivial) transformation from a variant of PARTITION shows that \(P0 \) is ordinary \(\text{NP-complete} \).

- Sophisticated techniques using
 - tools from number theory,
 - transformation from a variant of THREE-PARTITION
prove that \(P0 \) is strongly \(\text{NP-complete} \).

Hurkens, Lodi, Martello, Monaci and Woeginger

Complexity and approximation of an area packing problem
Optimization Letters, 2012.

- Hence \(P0 \) **cannot be solved** in polynomial time, nor in pseudo-polynomial time unless \(\mathcal{P} = \mathcal{NP} \).

- However its **optimization version** can be approximated
 with worst-case performance guarantee in polynomial time.
3. Theoretical analysis: Optimization version of P0

- The recognition version of problem P0 can be transformed into the following optimization version:
 - assume that any area a_j can be arbitrarily split into integer rectangular sub-areas (at most $a_j \times 1$ (unit) squares);
 - in this way the problem always has a feasible solution;
 - objective: pack all areas into the bin without overlapping by minimizing the number of created rectangular sub-areas.

- Of course, if the optimal solution to the optimization version has value n, i.e., a unique rectangular sub-area is created for each original area, then the recognition version has answer “YES”.

- This version makes sense by itself as a very naïve approximation of the application at hand. In other words, the best configuration is obtained by minimizing the number of sub-areas.
3. Theoretical analysis: a 3-approx algorithm for P0

- The general philosophy of the algorithm consists of the following phases:

A. Split each area a_j, $j \in J$, into two parts:

A.1 a “large” rectangle of size $\tilde{w}_j \times H$ (H the height of the bin), with

$$\tilde{w}_j = \left\lfloor \frac{a_j}{H} \right\rfloor,$$

and

A.2 a one dimensional (vertical) strip, i.e., a rectangle of size $1 \times \tilde{h}_j$ with

$$\tilde{h}_j = a_j - \tilde{w}_j H$$

(possibly only one part is created)

B. Subdivide the bin into two parts having height H:

B.1 a “large” portion of size $W_\ell (= \sum_{j \in J} \tilde{w}_j) \times H$ that allocates the rectangles;

B.2 a “small” portion of size $W_s (= W - W_\ell) \times H$,

whose W_s columns, of size $1 \times H$, are treated as W_s 1-dimensional bins:

consecutively allocate the one dimensional strips to the 1-dimensional bins
by further splitting only when necessary.

C. Post-optimize the solution. (Not needed for the worst-case guarantee.)
3. Theoretical analysis: a 3-approx algorithm for P0, example

Instance with $W = 15$, $H = 10$

<table>
<thead>
<tr>
<th>area</th>
<th>a_j</th>
<th>\tilde{w}_j</th>
<th>\tilde{h}_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
3. Theoretical analysis: a 3-approx algorithm for P0, proof

- Consecutively pack the strips in the first column until a strip is found that does not fit; split such strip, packing the largest feasible part in the current column; initialize the next column with the remaining part, and continue until all strips are packed.
- **Hence** each strip is split at most once (recall that each strip has size \(\tilde{h}_j < H \)).
- **Hence** each area produces at most three sub-areas, which proves the worst case behavior.

It can be shown that the bound is tight.
3. Conclusions of the theoretical analysis

Given an instance of Area Packing Problem (P0),

- it is strongly NP-complete to decide whether there is a feasible solution that has a **single rectangle per area**;
- it is trivial to construct instances for which such a solution does not exist;
- it is always possible to construct a solution that has at most **three rectangles per area**;
- such a solution can be found in **linear time**;
- what about the intermediate case (**two rectangles per area**)?
- it can be proved that all instances with \(n \leq 3 \) **areas** have a feasible solution with two rectangles per area;
- **Conjecture**: Every instance possesses a feasible solution with at most two rectangles per area.
Post-optimization of the approximation algorithm

- Post-optimization is useful in practice when there are areas j such that:
 (i) both the associated large rectangle and one dimensional strip have been created, and
 (ii) strip j is packed alone in a 1-dimensional bin (column):

- Move the 1-dimensional bin that packs strip j close to the rectangle associated with area j.
- \Rightarrow New solution in which area j is packed with a unique rectangle $(\tilde{w}_j + 1) \times H$.

\[
\begin{array}{cccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
1 & & & & & & \\
2 & & & & & & \\
3 & & & & & & \\
4 & & & & & & \\
5 & & & & & & \\
6 & & & & & & \\
\end{array}
\]
4. The real-world problems

Three main differences in the telecommunication problems at hand:

(I) The areas cannot be arbitrarily split:

- For each area a_j ($j \in J$), m_j sub-areas, each having a specified integer value a_{jl} ($j \in J$, $l \in L_j = \{1, \ldots, m_j\}$), are given in input, such that

$$\sum_{l \in L_j} a_{jl} = a_j \forall j \in J$$

- The sub-areas cannot be split.

- For each area we must define one or more rectangles containing sub-areas.

- This can make it impossible to completely pack all areas.

(II) Each sub-area has a profit (priority):

- The objective function is to maximize the total packed profit.
4. The real world problems

(III) The mapping of the packing must be stored in the frame.

- Each packed rectangle requires additional information (size and position of the rectangle, pointer to the associated area, . . .);

- minimizing the number of rectangles leads to minimizing the size of the map. However.

- the actual size of the map can only be computed once the packing is known.
4. Real world problems: P1 and P2 (Distributed Permutation Zone)

- Bin structure for Problem P1
- Bin structure for Problem P2

P2 is a generalization of P1

- A third real-world problem (P3) will be discussed later.
5. Evaluation of the technological constraints

- The planned system must use sets of standard PCs;
- each PC must perform 500 transmissions per second, i.e.,
- every 2 milliseconds it is necessary to
 - read the input;
 - execute the algorithm;
 - produce the output (packing and map);
 - transmit the corresponding packets.
- The bad news is that each transmission takes 1 millisecond, i.e.,
- each instance must be completely solved (packing and map) within 1 millisecond!
 (Although real instances are “small”, this requirement was really tough!)

Efficient two-dimensional data allocation in IEEE 802.16 OFDMA

A Fast and Efficient Algorithm to Exploit Multi-user Diversity in IEEE 802.16 BandAMC.
Computer Networks, 2011.
6. Development of heuristic algorithms: Stripes

- Two fast heuristics embedded in an interactive algorithm.
- Description for the more general problem P_2.
- First heuristic: Stripes, derived from the 3-approx algorithm for P_0.

- the packing depends on the profit per unit area;
- the partial left column is used for the strips.
6. Development of heuristic algorithms: Tiles

• **Second heuristic: Tiles**, totally different philosophy, totally different solutions:

- At each iteration, the best *vertical* or *horizontal* packing of an item is computed;
- best \approx minimum waste;
- the partial left column is used for the residual sub-areas.
6. Development of heuristic algorithms: Tiles&Stripes

- **Overall heuristic: Tiles&Stripes:**

 sort the sub-items according to non-increasing value of their profit per unit area;
 initialize the incumbent solution σ to empty;
 initialize S to contain all sub-items;

 repeat

 define initial tentative values for W and H (comment: usable bin);

 repeat (comment: try to pack the sub-item set S)

 execute Tiles(S) for the current W and H;
 execute Stripes(S) for the current W and H;
 compute the corresponding maps, and let τ be the best feasible solution, if any;

 if a feasible τ has been found then

 possibly update σ with τ, and increase the current W and H;

 else decrease the current W and H

 until τ includes all sub-items of S or limit on number of iterations has been reached;

 if all sub-items of the instance have been allocated then terminate;

 if all sub-items of S have been allocated then add sub-items to S;

 else remove sub-items from S

 until a prefixed maximum number of iterations has been executed.
Back to the real world problems: P3 (Adjacent Permutation Zone)

- Each data packet j has an area a_j (bytes) and a profit p_j (priority).
- The available zone is a $W \times H$ (time \times frequency) rectangle consisting of an array of slots:

![Diagram of slot allocation](image)

- Contiguous rows grouped q by q into $H' = H/q$ logical bands;
- Matrix E of n columns (one per data packet) and H' rows (one per logical band):

 $e_{ij} = \#$ bytes of data packet j that could be accommodated into a single slot of logical band i;
- data packets allocated to contiguous slots in row-wise manner, possibly over multiple rows;
- if data packet j is allocated to one logical band, say i, then the number of slots needed is a_j / e_{ij};

 if the allocation spans over a set of contiguous logical bands, then it is $\frac{a_j}{\min\{e_{ij}\}}$.

S. Martello, Two-Dimensional Packing Problems in Telecommunications
Theoretical analysis and heuristics for Problem P3

• Packing a maximum profit subset of packets is a strongly \mathcal{NP}-hard problem.
• Proof: transformation from the one-dimensional bin packing problem.
• Preliminary empirical analysis:
 The optimal solutions “very rarely” split packets between consecutive bands;
 reasonable because when splitting occurs the less favorable e_{ij} is used ($\frac{a_j}{\min\{e_{ij}\}}$);
 splitting only occurs for “large” high-priority packets that do not fit alone into a unique logical band.
• Two-phase algorithm:
 1. pack the “large” high-priority packets in a greedy way;
 2. Pack the remaining packets without splitting:
 – Packing without splitting can be reformulated as a Generalized Assignment Problem.
 – Solved by adapting heuristics for the GAP.
7. Implementation and experimental evaluation on realistic scenarios.

- All algorithms have been coded in C and run on a 2.40 GHz, CORE 2 DUO E6600 Desktop, running under Linux.

- The computer networking group (University of Pisa) and the Nokia Siemens laboratory implemented a realistic simulator for both kinds of model:
 - mix of data and voice users;
 - higher priority to packets directed to users with an ongoing voice conversation;
 - different packet sizes for data and voice traffic;
 - different ratios between the number of users with data traffic and those with voice conversations.
7. Computational experiments, Probl. P2 (Distributed Permutation Zone)

- More than 90,000 instances representing different scenarios of transmission.
- Computing times in CPU milliseconds.

<table>
<thead>
<tr>
<th></th>
<th>Optimality</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WH n</td>
<td># inst.</td>
</tr>
<tr>
<td>B1</td>
<td>17 10 [1, 13] 23,040</td>
<td>23,040</td>
</tr>
<tr>
<td>B2</td>
<td>17 30 [1, 15] 23,040</td>
<td>23,040</td>
</tr>
<tr>
<td>C1</td>
<td>17 10 [1, 15] 23,210</td>
<td>10,158</td>
</tr>
<tr>
<td>C2</td>
<td>17 30 [1, 26] 23,317</td>
<td>2,512</td>
</tr>
</tbody>
</table>

- # pot. = instances for which
 \((\text{Total area}) + (\text{map space for a solution with one rectangle per packet}) \leq WH;\)
- \(U\) = simple (and very optimistic) upper bound on the maximum area that can be packed;
- # opt. = instances for which \(z = U;\)
- # good = instances for which the ratio \(z/\text{maximum packable area} \geq 0.9;\)
7. Computational experiments, Probl. P3 (Adjacent Permutation Zone)

- 54,000 instances representing different scenarios of transmission.
- Computing times in CPU milliseconds.

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>H</th>
<th>n</th>
<th># inst.</th>
<th># pot.</th>
<th># opt.</th>
<th># good</th>
<th>Avg. (z = U)</th>
<th>Avg. T</th>
<th>Max T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>8</td>
<td>48</td>
<td>[12, 45]</td>
<td>9,000</td>
<td>9,000</td>
<td>8,204</td>
<td>9,000</td>
<td>0.9994</td>
<td>0.067</td>
<td>0.430</td>
</tr>
<tr>
<td>B-4</td>
<td>8</td>
<td>48</td>
<td>[12, 47]</td>
<td>9,000</td>
<td>9,000</td>
<td>8,271</td>
<td>8,999</td>
<td>0.9995</td>
<td>0.062</td>
<td>0.460</td>
</tr>
<tr>
<td>B-both</td>
<td>8</td>
<td>48</td>
<td>[12, 47]</td>
<td>9,000</td>
<td>9,000</td>
<td>8,210</td>
<td>9,000</td>
<td>0.9994</td>
<td>0.064</td>
<td>0.550</td>
</tr>
<tr>
<td>U-1</td>
<td>8</td>
<td>48</td>
<td>[10, 47]</td>
<td>9,000</td>
<td>8,091</td>
<td>5,321</td>
<td>8,164</td>
<td>0.9790</td>
<td>0.051</td>
<td>0.220</td>
</tr>
<tr>
<td>U-4</td>
<td>8</td>
<td>48</td>
<td>[10, 60]</td>
<td>9,000</td>
<td>8,003</td>
<td>5,070</td>
<td>8,176</td>
<td>0.9793</td>
<td>0.054</td>
<td>0.220</td>
</tr>
<tr>
<td>U-both</td>
<td>8</td>
<td>48</td>
<td>[20, 77]</td>
<td>9,000</td>
<td>7,057</td>
<td>2,218</td>
<td>8,197</td>
<td>0.9749</td>
<td>0.158</td>
<td>0.420</td>
</tr>
</tbody>
</table>

- \(U \) = solution to a 0-1 knapsack problem relaxation of P3:

 \[
 \text{profits} = \text{priorities}, \quad \text{weights} = \frac{a_j}{\min\{e_{ij}\}}, \quad \text{capacity} = WH;
 \]

- \# pot. = instances for which all packets are in the knapsack solution;
- \# opt. = instances for which \(z = U \);
- \# good = instances for which the ratio \(z/\text{maximum packable area} \geq 0.9 \).
Conclusions

- we have considered real-world packing problems arising in wireless telecommunications, and especially in orthogonal frequency division multiple access (OFDMA);

- these real-world packing problems are challenging per se BUT they become even more difficult because of technological constraints which require to solve them within one millisecond.

- we have defined a clean and easy-to-state packing problem (P0) that is the core of some of these problems;

- we have proved the complexity status of P0, and we have defined an approximation algorithm with worst-case guarantee;

- we have derived fast and efficient heuristics for the real-world problems;

Thank you for your attention