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Outline of this talk

• Objective: description of the development of an interdisciplinary research applicable to real

world problems.

• Four teams involved: in chronological order,

Nokia Siemens laboratory: research group on the IEEE 802.16/WiMAX standard;

University of Pisa: research group on Computer Networking (Prof. Luciano Lenzini);

University of Bologna: research group on Combinatorial Optimization (S.M.);

Technical University of Eindhoven: research group on

Theoretical Combinatorial Optimization (Prof. Gerhard J. Woeginger).

• The whole project has been described in:

Lodi, Martello, etc ... Efficient two-dimensional packing algorithms for mobile WiMAX.

Management Science, 2011.
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Contents

The project has been developed following the classical steps of an applied research:

1. birth: a real-world problem;

2. development of mathematical models (new two-dimensional packing problems);

3. theoretical analysis (computational complexity: NP-hard problems);

4. definition of mathematical models for the real-world problems;

5. evaluation of the technological constraints (extremely tough CPU limitations);

6. development of solution algorithms (fast and efficient heuristics);

7. implementation and experimental evaluation on realistic scenarios.
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1. The birth: an optimization problem in telecommunications

Telecommunication systems adopting the IEEE 802.16/WiMAX standard:

• a fixed station transmits/receives data packets to/from other stations (e.g., the mobile phones);

• all transmissions are performed using rectangular frames [time × frequency] (downlink zones).

• The fixed station must maximize the frame utilization by

1. deciding which packets will be included in the next transmission phase;

2. arranging each selected packet into one or more rectangular regions;

3. allocate the regions to the frame (without overlapping).
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2. The models: a look at the combinatorial optimization literature

Classical Two-Dimensional Bin Packing Problem (2BP)
• given n rectangles (items), having width wj and height hj (j = 1, . . . , n),

w1

h1

W

H
. . .

• and an unlimited number of large rectangles (bins), having width W and height H,

• A. pack all the items, without overlapping, in the minimum number of bins:

or

• B. pack a subset of items, without overl., in a single bin maximizing the packed area.

• Many variants: The items may/may not be rotated; by 90◦/any angle;

guillotine cutting may/may not be imposed (items must be obtained through a sequence of

edge-to-edge cuts parallel to the edges of the bin);

• . . . large literature

• Generalization of the One-Dimensional BP: n items of size wj, bins of size W .
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2. The models: our problems vs standard 2BPs

Main difference

• Input to 2BP: set of rectangles to be packed.

• Input to the telecommunication problems: set of data packets to be packed:

– a data packet is an amount of information, in practice a number;

– this number may be interpreted as an area aj;

– this area must be allocated to a wj × hj rectangle such that wjhj ≥ aj,

– or to a number mj of rectangles such that wj1hj1 + . . .+ wjmjhjmj ≥ aj;

– the selected rectangles must then be optimally packed in the downlink zone (the bin):

– each packed rectangle needs information in the downlink zone (sizes, coordinates), i.e.,

– part of the bin is used for maps transmission: size proportional to number of rectangles;

– hence the need of limiting the number of rectangles.
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3. Theoretical analysis: Problem P0

Questions:

• How difficult are the telecommunication problems at hand?

• Can they be solved in polynomial time? If not

• Can they be solved in pseudo-polynomial time? If not

• Can they be approximated with worst-case performance guarantee in polynomial time?

• Can they be solved efficiently in practice?

To answer these questions, let us consider the simplest combinatorial optimization problem we can

“extract” from the given problems:

Problem P0 (Area Packing):

• n areas;

• a single bin;

• allocate each area to one rectangle, and

pack all the rectangles into the bin without overlapping.
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3. Theoretical analysis: recognition version of P0

• Formally:

– n integer areas aj, j ∈ J = {1, . . . , n} and

– a single bin of integer sizes W ×H, with W ·H ≥
∑
j∈J

aj

• Is it possible to find integers w1, . . . , wn and h1, . . . , hn such that:

– aj = wjhj, j ∈ J , and

– the n rectangles Rj = [wj, hj], j ∈ J , can be packed into the bin without overlapping?

 

 
• 8 x 7 
 
• 14 
• 6 
• 8 
• 6 
• 16 
 
• 14 = 2 x 7 
• 6 = 2 x 3 
• 8 =  4 x 2 
• 6 = 6 x 1 
• 16 =  4 x 4 
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3. Theoretical analysis: Complexity of P0

• A simple (although non-trivial) transformation from a variant of PARTITION shows that

P0 is ordinary NP-complete.

• Sophisticated techniques using

– tools from number theory,

– transformation from a variant of THREE-PARTITION

prove that P0 is strongly NP-complete.

Hurkens, Lodi, Martello, Monaci and Woeginger

Complexity and approximation of an area packing problem

Optimization Letters, 2012.

• Hence P0 cannot be solved in polynomial time, nor in pseudo-polynomial time

unless P = NP .

• However its optimization version can be approximated

with worst-case performance guarantee in polynomial time.
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3. Theoretical analysis: Optimization version of P0

• The recognition version of problem P0 can be transformed into the following

optimization version:

– assume that any area aj can be arbitrarily split into integer rectangular sub-areas

(at most aj 1× 1 (unit) squares);

– in this way the problem always has a feasible solution;

– objective: pack all areas into the bin without overlapping

by minimizing the number of created rectangular sub-areas.

• Of course, if the optimal solution to the optimization version has value n, i.e.,

a unique rectangular sub-area is created for each original area,

then the recognition version has answer “YES”.

• This version makes sense by itself as a very näıve approximation of the application at hand.

In other words, the best configuration is obtained by minimizing the number of sub-areas.
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3. Theoretical analysis: a 3-approx algorithm for P0

• The general philosophy of the algorithm consists of the following phases:

A. Split each area aj, j ∈ J , into two parts:

A.1 a “large” rectangle of size w̃j ×H (H the height of the bin) , with

w̃j =
⌊
aj
H

⌋
, and

A.2 a one dimensional (vertical) strip, i.e., a rectangle of size 1× h̃j with

h̃j = aj − w̃jH

(possibly only one part is created)

B. Subdivide the bin into two parts having height H:

B.1 a “large” portion of size W`(=
∑

j∈J w̃j)×H that allocates the rectangles;

B.2 a “small” portion of size Ws(= W −W`)×H,

whose Ws columns, of size 1×H, are treated as Ws 1-dimensional bins:

consecutively allocate the one dimensional strips to the 1-dimensional bins

by further splitting only when necessary.

C. Post-optimize the solution. (Not needed for the worst-case guarantee.)
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3. Theoretical analysis: a 3-approx algorithm for P0, example

Instance with W = 15, H = 10

area aj w̃j h̃j
1 32 3 2
2 6 - 6
3 50 5 -
4 25 2 5
5 20 2 -
6 14 1 4

1 3 4 5 6

1

2

4

4

6
H

W` Ws

W
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3. Theoretical analysis: a 3-approx algorithm for P0, proof

• Consecutively pack the strips in the first column until a strip is found that does not fit;

split such strip, packing the largest feasible part in the current column;

initialize the next column with the remaining part, and continue until all strips are packed.

• Hence each strip is split at most once (recall that each strip has size h̃j < H).

• Hence each area produces at most three sub-areas, which proves the worst case behavior.

1 3 4 5 6

1

2

4

4

6
H

W` Ws

W
• It can be shown that the bound is tight.
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3. Conclusions of the theoretical analysis

Given an instance of Area Packing Problem (P0),

• it is strongly NP-complete to decide whether there is a feasible solution that has

a single rectangle per area;

• it is trivial to construct instances for which such a solution does not exist;

• it is always possible to construct a solution that has at most three rectangles per area;

• such a solution can be found in linear time;

• what about the intermediate case (two rectangles per area)?

• it can be proved that all instances with n ≤ 3 areas have a feasible solution with

two rectangles per area;

• Conjecture: Every instance possesses a feasible solution with at most two rectangles per area.
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Post-optimization of the approximation algorithm

• Post-optimization is useful in practice when there are areas j such that:

(i) both the associated large rectangle and one dimensional strip have been created, and

(ii) strip j is packed alone in a 1-dimensional bin (column):

1 2 3 4 5 6

1

4

2

3

5

H

W` Ws

W

@
@�

�	

• Move the 1-dimensional bin that packs strip j close to the rectangle associated with area j.

1 2 3 4 5 6

1

4

3

5

• ⇒ New solution in which area j is packed with a unique rectangle (w̃j + 1)×H.
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4. The real-world problems

Three main differences in the telecommunication problems at hand:

(I) The areas cannot be arbitrarily split:

• For each area aj (j ∈ J), mj sub-areas, each having a specified integer value

ajl (j ∈ J , l ∈ Lj = {1, . . . ,mj}),

are given in input, such that ∑
l∈Lj

ajl = aj ∀ j ∈ J

• The sub-areas cannot be split.

• For each area we must define one or more rectangles containing sub-areas.

• This can make it impossible to completely pack all areas.

(II) Each sub-area has a profit (priority):

• The objective function is to maximize the total packed profit.
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4. The real world problems

(III) The mapping of the packing must be stored in the frame.

• Each packed rectangle requires additional information (size and position of the rectangle,

pointer to the associated area, . . . );
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1

2

4

4

6
Map

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

• minimizing the number of rectangles leads to minimizing the size of the map. However.

• the actual size of the map can only be computed once the packing is known.
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4. Real world problems: P1 and P2 (Distributed Permutation Zone)

Map

H2 ←− Bin structure for Problem P1

W2
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H2Bin structure for Problem P2 −→
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• A third real-world problem (P3) will be discussed later.
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5. Evaluation of the technological constraints

• The planned system must use sets of standard PCs;

• each PC must perform 500 transmissions per second, i.e.,

• every 2 milliseconds it is necessary to

– read the input;

– execute the algorithm;

– produce the output (packing and map);

– transmit the corresponding packets.

• The bad news is that each transmission takes 1 millisecond, i.e.,

• each instance must be completely solved (packing and map) within 1 millisecond!.

(Although real instances are “small”, this requirement was really tough!)

C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, M. Monaci.

Efficient two-dimensional data allocation in IEEE 802.16 OFDMA

Proceedings of IEEE INFOCOM 2010.

A Fast and Efficient Algorithm to Exploit Multi-user Diversity in IEEE 802.16 BandAMC.

Computer Networks, 2011.
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6. Development of heuristic algorithms: Stripes

• Two fast heuristics embedded in an interactive algorithm.

• Description for the more general problem P2.

• First heuristic: Stripes, derived from the 3-approx algorithm for P0:

a b c d e

a

d

b

@
@�

�	

H

Ĥ

c

e

1
Ŵ

• the packing depends on the profit per unit area;

• the partial left column is used for the strips.
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6. Development of heuristic algorithms: Tiles

• Second heuristic: Tiles, totally different philosophy, totally different solutions:

1 2

3

4

5

6

7

H

Ĥ

8

9

1
Ŵ

• At each iteration, the best vertical or horizontal packing of an item is computed;

• best ' minimum waste;

• the partial left column is used for the residual sub-areas.
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6. Development of heuristic algorithms: Tiles&Stripes

• Overall heuristic: Tiles&Stripes:

sort the sub-items according to non-increasing value of their profit per unit area;

initialize the incumbent solution σ to empty;

initialize S to contain all sub-items;

repeat

define initial tentative values for W and H (comment: usable bin);

repeat (comment: try to pack the sub-item set S)

execute Tiles(S) for the current W and H;

execute Stripes(S) for the current W and H;

compute the corresponding maps, and let τ be the best feasible solution, if any;

if a feasible τ has been found then

possibly update σ with τ , and increase the current W and H

else decrease the current W and H

until τ includes all sub-items of S or limit on number of iterations has been reached;

if all sub-items of the instance have been allocated then terminate;

if all sub-items of S have been allocated then add sub-items to S;

else remove sub-items from S

until a prefixed maximum number of iterations has been executed.
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Back to the real world problems: P3 (Adjacent Permutation Zone)

• Each data packet j has an area aj (bytes) and a profit pj (priority).

• The available zone is a W ×H (time × frequency) rectangle consisting of an array of slots:

• Contiguous rows grouped q by q into H ′ = H/q logical bands;

• Matrix E of n columns (one per data packet) and H ′ rows (one per logical band):

eij = # bytes of data packet j that could be accommodated into a single slot of logical band i;

• data packets allocated to contiguous slots in row-wise manner, possibly over multiple rows;

• if data packet j is allocated to one logical band, say i, then the number of slots needed is
aj

eij
;

if the allocation spans over a set of contiguous logical bands, then it is
aj

min{eij}
.
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Theoretical analysis and heuristics for Problem P3

• Packing a maximum profit subset of packets is a strongly NP-hard problem.

• Proof: transformation from the one-dimensional bin packing problem.

• Preliminary empirical analysis:

The optimal solutions “very rarely” split packets between consecutive bands;

• reasonable because when splitting occurs the less favorable eij is used (
aj

min{eij}
);

• splitting only occurs for “large” high-priority packets that do not fit alone into a unique logical

band.

• Two-phase algorithm:

1. pack the “large” high-priority packets in a greedy way;

2. Pack the remaining packets without splitting:

– Packing without splitting can be reformulated as a Generalized Assignment Problem.

– Solved by adapting heuristics for the GAP.
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7. Implementation and experimental evaluation on realistic scenarios.

• All algorithms have been coded in C

and run on a 2.40 GHz, CORE 2 DUO E6600 Desktop, running under Linux.

• The computer networking group (University of Pisa) and the Nokia Siemens laboratory

implemented a realistic simulator for both kinds of model:

• mix of data and voice users;

• higher priority to packets directed to users with an ongoing voice conversation;

• different packet sizes for data and voice traffic;

• different ratios between the number of users with data traffic and those with voice

conversations.
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7. Computational experiments, Probl. P2 (Distributed Permutation Zone)

• More than 90,000 instances representing different scenarios of transmission.

• Computing times in CPU milliseconds.

Optimality Time (ms)

W H n # inst. # pot. # opt. # good Avg. z = U Avg. T Max T

B1 17 10 [1, 13] 23,040 23,040 22,114 22,846 0.9971 0.038 0.410

B2 17 30 [1, 15] 23,040 23,040 21,840 23,014 0.9977 0.078 0.540

C1 17 10 [1, 15] 23,210 10,158 8,340 13,719 0.9241 0.085 0.550

C2 17 30 [1, 26] 23,317 2,512 1,788 4,544 0.8378 0.196 0.960

• # pot. = instances for which

(Total area) + (map space for a solution with one rectangle per packet) ≤ WH;

• U = simple (and very optimistic) upper bound on the maximum area that can be packed;

• # opt. = instances for which z = U ;

• # good = instances for which the ratio z/maximum packable area ≥ 0.9
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7. Computational experiments, Probl. P3 (Adjacent Permutation Zone)

• 54,000 instances representing different scenarios of transmission.

• Computing times in CPU milliseconds.

Optimality Time (ms)

W H n # inst. # pot. # opt. # good Avg. z = U Avg. T Max T

B-1 8 48 [12, 45] 9,000 9,000 8,204 9,000 0.9994 0.067 0.430

B-4 8 48 [12, 47] 9,000 9,000 8,271 8,999 0.9995 0.062 0.460

B-both 8 48 [12, 47] 9,000 9,000 8,210 9,000 0.9994 0.064 0.550

U-1 8 48 [10, 47] 9,000 8,091 5,321 8,164 0.9790 0.051 0.220

U-4 8 48 [10, 60] 9,000 8,003 5,070 8,176 0.9793 0.054 0.220

U-both 8 48 [20, 77] 9,000 7,057 2,218 8,197 0.9749 0.158 0.420

• U = solution to a 0-1 knapsack problem relaxation of P3:

profits = priorities, weights =
aj

min{eij}
, capacity = WH;

• # pot. = instances for which all packets are in the knapsack solution;

• # opt. = instances for which z = U ;

• # good = instances for which the ratio z/maximum packable area ≥ 0.9
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Conclusions

• we have considered real-world packing problems arising in wireless telecommunications, and

especially in orthogonal frequency division multiple access (OFDMA);

• these real-world packing problems are challenging per se BUT they become even more difficult

because of technological constraints which require to solve them within one millisecond.

• we have defined a clean and easy-to-state packing problem (P0) that is the core of some of

these problems;

• we have proved the complexity status of P0, and we have defined an approximation algorithm

with worst-case guarantee;

• we have derived fast and efficient heuristics for the real-world problems;

Thank you for your attention
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